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Abstract
Diffusion-based generative models have recently become a prominent approach for controllable image and video
synthesis, enabling a range of applications in creative production, content retargeting, and post-processing work-
flows. These models typically operate over high-dimensional spatiotemporal tensors and rely on iterative denoising
processes guided by conditioning signals such as text or exemplars. However, most existing approaches treat the
video volume in a spatially uniform manner, which limits their ability to perform localized, semantically mean-
ingful edits that preserve contextual consistency outside a user-specified region. This is a significant limitation in
practical video editing scenarios, where users often require precise modifications within a region of interest while
maintaining global coherence. This paper investigates region-of-interest aware diffusion models for controllable
video editing, in which user-specified spatial or spatiotemporal regions guide the evolution of the denoising pro-
cess. The proposed formulation treats regions of interest as first-class conditioning objects that influence sampling
dynamics, attention patterns, and loss weighting. A tensorial representation of region masks is integrated into the
diffusion process to jointly regulate spatial focus, temporal consistency, and identity preservation outside the edited
areas. The study explores both training-time and sampling-time mechanisms for region control, including weighted
reconstruction objectives and region-aware score fields. Experimental analyses on diverse editing tasks, including
object replacement, attribute modification, and localized stylization, indicate that region-of-interest aware diffusion
provides controllable behavior while maintaining temporal stability and content preservation in non-edited regions.

1. Introduction

Diffusion models have emerged as a flexible probabilistic framework for generative modeling of high-
dimensional signals, particularly for visual modalities such as images and videos [1]. These models
construct a Markovian or continuous-time noising process that gradually corrupts data into a simple
reference distribution and learn a reverse process that incrementally denoises the corrupted samples.
The reverse dynamics are parameterized by deep neural networks, typically U-shaped architectures
equipped with multi-scale convolutions and attention mechanisms. When conditioned on auxiliary
signals such as natural language descriptions, categorical labels, or reference frames, diffusion models
support a variety of conditional synthesis and editing tasks. In the video setting, this flexibility enables
controlled generation over spatiotemporal volumes, making such models attractive for editing tasks that
must respect both spatial detail and temporal continuity.

Practical video editing workflows, however, rarely require global modification of every pixel. Instead,
artists and downstream applications often operate on localized regions that encode objects, parts, or
semantic entities, while requiring that the remainder of the scene remains unchanged both visually and
temporally. Existing diffusion-based video editing methods typically introduce editing constraints at the
global level, for example through prompt-based guidance, keyframe supervision, or spatially uniform
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cross-attention modulation. Although these strategies can influence the overall appearance or motion,
they often lack precise control over where in the video specific changes occur, and they may inadvertently
introduce unintended modifications in regions that are meant to remain fixed. This can be problematic
for tasks such as selective replacement of objects, localized stylization of foreground actors, or editing
of a particular temporal segment without altering the broader context.

Å
Input video 𝑥0

Å
Forward noising 𝑥𝑡

Æ
ROI-aware denoiser 𝜖𝜃 (𝑥𝑡 , 𝑀, 𝑐, 𝑡)

Å
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½
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¶
Gaussian prior

Â
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Figure 1: Overview of the region-of-interest aware video diffusion pipeline. The original video is diffused to a noisy
latent, which is then denoised by a mask- and condition-aware network to produce an edited video that respects
both the region constraints and the global temporal structure.

Symbol Description Shape / domain

𝑋 Video tensor representation R𝑇×𝐻×𝑊×𝐶

𝑥0 Vectorized clean video sample R𝑑 , 𝑑 = 𝑇𝐻𝑊𝐶

{𝑥𝑡 }𝐾𝑡=0 Noisy samples along diffusion trajec-
tory

R𝑑 for each 𝑡

𝑀 Region-of-interest mask (hard or
soft)

{0, 1}𝑇×𝐻×𝑊 or [0, 1]𝑇×𝐻×𝑊

𝑚 Vectorized mask R𝑑
′ , 𝑑′ = 𝑇𝐻𝑊

𝑃roi , 𝑃bg ROI / background projection opera-
tors

𝑥 ↦→ 𝑚 ⊙ 𝑥, 𝑥 ↦→ (1 − 𝑚) ⊙ 𝑥

Table 1: Key notation for video tensors, masks, and projection operators used in region-aware video diffusion
models.

Region-of-interest representations provide an intuitive abstraction for specifying where edits should
take effect. A region of interest can be defined as a spatial mask per frame, a spatiotemporal volume, or
a per-voxel importance weighting field that indicates the strength of desired modifications. Integrating
such region-aware signals into diffusion-based video editing requires rethinking how the noise prediction
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Figure 2: Mask-gated decomposition of the denoiser into region-of-interest and background components. Noisy
latents are split by the mask, processed along two pathways, and recombined via a spatially varying mixture that
yields different noise predictions for edited and preserved regions.

Quantity Role in the model Typical instantiation

{𝑥𝑡 } Forward / reverse diffusion states 𝑥𝑡 =
√
𝛼𝑡 𝑥0 +

√
1 − 𝛼𝑡 𝜖

𝜖𝜃 Noise or score predictor U-shaped spatiotemporal network
with attention

𝑐 Conditioning signal for controllable
generation

Text prompt, labels, reference
frames, style codes

{𝛽𝑡 }, {𝛼𝑡 } Variance / noise-retention schedule Discrete schedule defining noising
and denoising strength

𝐴(𝑥𝑡 ) Spatiotemporal self-attention opera-
tor

Attention over flattened (𝑡 , ℎ, 𝑤)
tokens

𝑓 (𝑡 ) , 𝑔 (𝑡 ) Drift and diffusion in SDE view Scalar functions defining
continuous-time dynamics

Table 2: Core diffusion and conditioning variables for video, connecting discrete-time updates and continuous-
time stochastic formulations.

network, the sampling procedure, and the training objectives interact with spatially structured constraints.
A direct application of image-based inpainting strategies to video may fail to account for temporal
coherence, while naive masking of latents during denoising can lead to artifacts at region boundaries
and discontinuities across frames. Therefore, a more principled formulation that jointly models the
spatiotemporal structure and the region-aware conditioning is needed.

This paper studies diffusion models for controllable video editing that explicitly incorporate region-
of-interest signals in both the model architecture and the probabilistic formulation. The central idea is
to treat region masks as additional conditioning variables that modulate the denoising dynamics and
the underlying score field in a spatially inhomogeneous manner. Rather than applying uniform noise
removal across the entire video tensor, the model learns to adjust its reconstruction strength and editing
behavior as a function of both the current noisy sample and the region specification. This leads to a
framework where the video volume is decomposed into edited and preserved components, with different
reconstruction objectives and sampling trajectories for each part.

The analysis begins by representing video data as high-order tensors in a Euclidean space and defining
region masks as indicator or weighting tensors over the same index set. Building on this representation,
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Mechanism Where applied Mask usage Expected effect

Mask concatenation Input to denoiser 𝑀 added as extra channels Basic spatial localization of
edits

Masked feature decomposi-
tion

Internal feature maps Split into ROI / background
branches

Different processing for
edited vs. preserved areas

Mixture-of-experts noise
head

Output of network 𝜖𝜃 = 𝑀 ⊙ 𝜖roi + (1−𝑀 ) ⊙
𝜖bg

Separate noise estimates
blended by mask

Self-attention modulation Spatiotemporal attention
layers

Mask-dependent bias on
attention logits

Stronger interactions inside
ROI, controlled cross-talk

Cross-attention routing Text or exemplar condition-
ing

Region-aligned relevance
matrix 𝑅

Different spatial zones attend
to different condition tokens

Hierarchical mask pyramids Multi-scale U-Net levels Downsampled 𝑀 (𝑠) at each
scale

Coherent region reasoning
from coarse to fine detail

Table 3: Region-of-interest conditioning mechanisms integrated into the denoising network architecture at different
depths and modules.

Term Definition Impact on editing behaviour

𝑠𝑖 𝑗 Baseline attention score
𝑞⊤
𝑖
𝑘 𝑗√
𝑑𝑘

Standard spatiotemporal token inter-
actions

𝛾 𝑚𝑖𝑚 𝑗 ROI–ROI bias Encourages stronger coupling within
the edited region

𝛿 𝑚𝑖 (1 − 𝑚 𝑗 ) ROI → background bias Controls influence of edits on pre-
served areas

𝜂 (1 − 𝑚𝑖 )𝑚 𝑗 Background → ROI bias Limits leakage of background struc-
ture into ROI edits

𝑎𝑖 𝑗 Attention weight after softmax over
𝑠𝑖 𝑗

Final region-aware aggregation of
value vectors 𝑣 𝑗

Table 4: Mask-aware self-attention terms that shape interactions within and across regions of interest during
denoising.

Design element Mathematical form Intuitive effect

Spatial guidance field 𝜖roi = 𝜖𝜃 (𝑥𝑡 ,∅) + 𝑔 ⊙
(𝜖𝜃 (𝑥𝑡 , 𝑐) − 𝜖𝜃 (𝑥𝑡 ,∅) )

Concentrates classifier-free guidance
inside ROI

Diagonal preconditioner 𝑊 = diag(𝑤𝑖 ) with larger 𝑤𝑖 in
ROI

Stronger local update steps where
edits are desired

Time-varying guidance 𝑔𝑡 = 𝛾𝑡𝑀 with 𝛾𝑡 increasing as
𝑡 → 0

Coarse global structure early, sharper
edits late

Dynamic mask evolution 𝑀𝑡−1 = Ψ(𝑀𝑡 , 𝑥𝑡 , 𝑐) Allows ROI to dilate or erode in
response to generated content

Smoothed boundary mask 𝑀̃ = 𝑀 + 𝛼Δ𝑀̃ Soft transition layer reducing arti-
facts at region edges

Table 5: Region-dependent guidance and preconditioning strategies that induce non-uniform reverse dynamics
across the video volume.

the diffusion process is extended with region-aware operators that project the global score field onto
subspaces associated with edited and non-edited regions [2]. The noise prediction network receives both
the noisy video latent and the region tensor as inputs, and its architecture is adapted to exploit region
structure through spatial gating and attention re-weighting. At training time, loss terms with different
weights are assigned to region interior, region boundaries, and background to balance edit fidelity and
identity preservation. At sampling time, the region signal influences the reverse dynamics via guidance
mechanisms that selectively emphasize edits within the specified spatial support.

The proposed region-of-interest aware diffusion formulation is evaluated on several types of con-
trollable video editing tasks. These tasks involve modifying attributes of objects, replacing or inserting
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Loss term Region focus Objective Weight symbol

Lroi Inside ROI Masked denoising error on 𝜖 𝜆roi
Lbg Background Masked denoising error out-

side ROI
𝜆bg

Ledit Inside ROI Reconstruction of edited tar-
get 𝑥′0 (e.g., ℓ1)

𝜂edit

Lpreserve Background Reconstruction of original
𝑥0 (e.g., ℓ1)

𝜂preserve

Ltemp Temporal neighbours Smoothness of frame-wise
features or pixels

𝜂temp

Lreg Global Regularization of parame-
ters (e.g., weight decay)

𝜂reg

Ltotal Global Weighted sum of all compo-
nents

–

Table 6: Training objectives decomposed into region-aware denoising, editing, preservation, and temporal consis-
tency terms.

Sampling scheme Description Pros and trade-offs

DDPM-style Euler updates Single-step explicit update per
timestep

Simple, stable, may require many
steps for high quality

Second-order Runge–Kutta Two evaluations per step with inter-
mediate state

Better local accuracy, fewer steps at
higher cost per step

Two-phase guidance schedule Weak guidance at high noise, strong
near 𝑡 = 0

Balances global structure with pre-
cise local edits

Noising original video Initialize with 𝑥𝑇 =
√
𝛼𝑇 𝑥0 +√

1 − 𝛼𝑇 𝜖
Anchors background to input while
allowing ROI changes

Region-focused computation Restrict expensive modules to ROI
neighbourhood

Lower cost when regions are small,
requires careful implementation

Table 7: Sampling and numerical schemes tailored to region-aware video editing in diffusion models.

Aspect Metric Region focus What it probes

Background preservation Pixel or perceptual distance
to 𝑥0

Outside ROI Identity and context stability
in non-edited areas

Edit alignment Classifier or feature-based
attribute score

Inside ROI Strength and correctness of
applied edit or style

Temporal coherence Temporal gradient magni-
tude𝐺temp

ROI vs. background Flicker, oversmoothing, and
motion consistency

Boundary quality Error in boundary band
𝐸bound

Around 𝜕𝑀 Artifacts and blending at
ROI interfaces

Latent structure CovariancesΣroi (𝑡 ) ,Σbg (𝑡 ) Feature space Allocation of variation to
edited vs. preserved regions

Mask robustness Sensitivity 𝑆 to small mask
perturbations

Near ROI borders Stability under imperfect
segmentations or mask edits

Table 8: Evaluation axes and quantitative metrics for analyzing controllability, coherence, and robustness of region-
aware video diffusion models.

new content, and applying localized style transformations. The experiments focus on analyzing control-
lability, preservation of identity outside the edited region, and temporal smoothness of both edited and
non-edited areas. While the study does not exhaustively optimize architectures or hyperparameters, it
examines how different choices of region embedding, loss weighting, and sampling schemes affect the
trade-off between edit precision and global coherence. The results suggest that region-aware constraints
offer a useful means for structuring the generative process in video diffusion models, particularly when
coupled with spatiotemporal attention mechanisms that respect the geometry of the video tensor.



6 Monteinstitute

`
ROI tokens
{𝑢𝑖 : 𝑚𝑖 ≈ 1}

b
Background tokens

{𝑢 𝑗 : 𝑚 𝑗 ≈ 0}

¨
ROI-aware self-attention

𝑠𝑖 𝑗 = 𝑠𝑖 𝑗 + 𝛾𝑚𝑖𝑚 𝑗 + 𝛿𝑚𝑖 (1 − 𝑚 𝑗 ) + 𝜂(1 − 𝑚𝑖)𝑚 𝑗

�
Region-modulated cross-attention
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Figure 3: Region-aware attention mechanisms. Self-attention logits are modulated by the spatial mask to emphasize
interactions within the edited region and regulate cross-region influence, while cross-attention is biased by a region-
to-token association matrix aligning spatial locations with specific conditioning tokens.

2. Background on Diffusion Models and Video Representations

In diffusion-based generative modeling, a data sample is treated as a random vector in a high-dimensional
Euclidean space and is progressively perturbed by a forward noising process. For video, consider a tensor
representation

𝑋 ∈ R𝑇×𝐻×𝑊×𝐶 ,

where 𝑇 denotes the number of frames, 𝐻 and 𝑊 are spatial dimensions, and 𝐶 is the number of
channels. For convenience, this tensor can be reshaped into a vector 𝑥0 ∈ R𝑑 with

𝑑 = 𝑇𝐻𝑊𝐶.

The forward diffusion process defines a sequence of random variables {𝑥𝑡 }𝐾𝑡=0 that gradually add
Gaussian noise to the original data. In a discrete-time formulation with variance schedule {𝛽𝑡 }, the
forward transitions are defined as

𝑥𝑡 =
√
𝛼𝑡 𝑥0 +

√︁
1 − 𝛼𝑡 𝜖, (2.1)

where 𝛼𝑡 is the cumulative product of noise retention factors and 𝜖 is a standard Gaussian random
vector in R𝑑 . This closed-form expression for 𝑥𝑡 in terms of 𝑥0 allows efficient sampling of noisy
data at arbitrary diffusion steps without explicitly simulating each intermediate transition. The reverse
process seeks to approximate the conditional distribution 𝑝(𝑥𝑡−1 | 𝑥𝑡 ) using a learned neural network
that predicts either the original data, the noise, or the local score.
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Figure 4: Spatiotemporal denoising with spatially varying guidance. A guidance field derived from the region mask
scales the difference between conditional and unconditional denoisers, concentrating edit strength in the region
while retaining unconditional reconstruction in the background along the reverse diffusion trajectory.

For controllable generation, the reverse dynamics are conditioned on auxiliary information 𝑐, which
may be text, semantic labels, reference images, or other control signals. A common parameterization
introduces a neural network 𝜖𝜃 that predicts the noise component given 𝑥𝑡 , the timestep 𝑡, and the
condition 𝑐. The reverse update can then be expressed as

𝑥𝑡−1 = 𝑎𝑡𝑥𝑡 + 𝑏𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐) + 𝜎𝑡 𝑧𝑡 , (2.2)

where 𝑎𝑡 , 𝑏𝑡 , and 𝜎𝑡 are scalar coefficients determined by the noise schedule and 𝑧𝑡 is a fresh Gaussian
noise term. The network 𝜖𝜃 is usually instantiated as a U-shaped architecture with multi-scale con-
volutions that process spatial dimensions and temporal convolutions or attention layers that propagate
information across frames.

When extending diffusion models to video, the tensor representation introduces considerable com-
putational challenges. The dimensionality 𝑑 grows linearly with the temporal dimension, and naive
application of isotropic convolutions or dense attention across the entire spatiotemporal volume can be
prohibitively expensive. To manage this complexity, many video diffusion architectures adopt factorized
structures, for example applying two-dimensional convolutions per frame and augmenting them with
lightweight temporal modules or low-rank attention in time [3]. In the context of region-of-interest aware
modeling, this factorization can be leveraged to inject spatially localized information, since operations
in the spatial dimensions are naturally aligned with the notion of regions.

Region representations in video can be formalized as tensors

𝑀 ∈ {0, 1}𝑇×𝐻×𝑊 ,

where 𝑀𝑡 ,ℎ,𝑤 = 1 indicates that the spatial position (ℎ, 𝑤) in frame 𝑡 belongs to the region of interest,
and 𝑀𝑡 ,ℎ,𝑤 = 0 otherwise. More general soft masks can be described by values in [0, 1] that describe the
relative importance of editing each spatiotemporal location. For mathematical analysis, it is convenient
to vectorize the mask into 𝑚 ∈ R𝑑

′ , where 𝑑′ = 𝑇𝐻𝑊 , and interpret it as a diagonal weighting operator
on the ambient space of video pixels. Define the linear operator 𝑃roi acting on a vectorized video 𝑥 by

𝑃roi𝑥 = 𝑚 ⊙ 𝑥, (2.3)
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Figure 5: Structure of the training objective. The denoiser is supervised by separate reconstruction losses in the
region and background, which are combined with temporal coherence regularization to form a total loss that
balances edit fidelity, identity preservation, and dynamics.

where ⊙ denotes componentwise multiplication. The complementary operator 𝑃bg corresponding to the
background or non-edited region is then

𝑃bg𝑥 = (1 − 𝑚) ⊙ 𝑥. (2.4)

These operators decompose the video into edited and preserved components within the same ambient
space.

In probabilistic terms, one can view the joint distribution of the full video and the mask as a random
pair (𝑥0, 𝑚). For most editing scenarios, the mask is provided by a user or an external system and is
treated as a fixed conditioning variable. The goal of region-of-interest aware video editing is to generate
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Figure 6: Time-dependent control of the reverse process. Guidance strength is increased toward low-noise steps,
while mask smoothing or evolution can be applied in mid-range steps, allowing coarse global structure to form
before enforcing strong localized edits near the end of sampling.

a modified video 𝑥∗0 that satisfies two constraints. First, the edited region should conform to the desired
control specified by a condition 𝑐, which may encode a target object, style, or motion [4]. Second, the
non-edited region should remain close to the original content to preserve identity and context. This can
be expressed informally as

𝑃roi𝑥
∗
0 ≈ 𝑥roi (𝑐), (2.5)

𝑃bg𝑥
∗
0 ≈ 𝑃bg𝑥0, (2.6)

where 𝑥roi (𝑐) is an implicit target determined by the condition. In practice, 𝑥roi (𝑐) may not be available
as an explicit tensor and is instead implemented through guidance signals or learned representations.
The diffusion model must reconcile these goals while respecting the temporal structure induced by the
sequence of frames.

A common way to encode temporal coherence in video diffusion models is through spatiotemporal
attention mechanisms. Let the vectorized representation of the video at step 𝑡 be 𝑥𝑡 . Self-attention defines
an interaction kernel

𝐴(𝑥𝑡 ) = softmax
(
𝑄(𝑥𝑡 )𝐾 (𝑥𝑡 )⊤√

𝑑𝑘

)
𝑉 (𝑥𝑡 ), (2.7)

where 𝑄, 𝐾 , and 𝑉 are learned linear projections and 𝑑𝑘 is the key dimension [5]. When applied to
flattened spatiotemporal tokens, attention can propagate information across all pixels and frames. For
region-of-interest aware modeling, this mechanism offers an opportunity to bias interactions towards
regions, by modifying either the attention logits or the value aggregation according to the mask.
Introducing the mask as an additional factor can transform the global attention into a spatially modulated
operation that emphasizes or de-emphasizes certain regions during denoising.

From the perspective of stochastic calculus, discrete-time diffusion models approximate the time-
discretized solution of a reverse-time stochastic differential equation. In the continuous-time framework,
the forward process is defined by

d𝑥 = 𝑓 (𝑡)𝑥 d𝑡 + 𝑔(𝑡) d𝑤𝑡 , (2.8)
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where 𝑤𝑡 is a Wiener process and 𝑓 and 𝑔 are scalar functions specifying the drift and diffusion
coefficients. The reverse-time dynamics have the form

d𝑥 =
(
𝑓 (𝑡)𝑥 − 𝑔(𝑡)2∇𝑥 log 𝑝𝑡 (𝑥)

)
d𝑡 + 𝑔(𝑡) d𝑤̄𝑡 , (2.9)

where 𝑝𝑡 (𝑥) is the marginal density at time 𝑡 and 𝑤̄𝑡 is a Wiener process in reverse time. In this view,
the neural network approximates the score field ∇𝑥 log 𝑝𝑡 (𝑥 | 𝑐). Region-of-interest aware modeling
can be interpreted as an approximation of a spatially inhomogeneous score field in which different
regions of the domain have different prior structures or conditional behaviors. By designing the network
and objective to respect the decomposition induced by the mask, one can bias the score estimator to
behave differently in edited and non-edited regions, thus implementing controllable video editing via
the generative process itself [6] [7].

3. Region-of-Interest Aware Conditioning Mechanisms

Incorporating region-of-interest signals into diffusion-based video editing requires a modeling strategy
that can handle spatial localization, temporal consistency, and compatibility with the existing denoising
network. A basic approach is to concatenate the mask 𝑀 with the video latent as an additional channel
and allow the network to infer how to use this information. This strategy treats the mask as an image-like
input and permits convolutional layers to propagate mask information through spatial neighborhoods.
However, such a simple concatenation may not be sufficient to achieve fine controllability, especially
when the network must differentiate sharply between edited and preserved regions while maintaining
temporal coherence and visual consistency at region boundaries.

A more structured approach can be formulated by treating the mask as an operator that acts on both
the input and the intermediate feature maps. Consider the video latent at time step 𝑡, represented as a
tensor

𝑋𝑡 ∈ R𝑇×𝐻×𝑊×𝐶 .

Let 𝑀 be a soft mask with values in [0, 1]. Define

𝑋 roi
𝑡 = 𝑀 ⊙ 𝑋𝑡 , (3.1)

𝑋
bg
𝑡 = (1 − 𝑀) ⊙ 𝑋𝑡 [8] . (3.2)

These tensors isolate contributions from the region of interest and the background. The diffusion
network can be partitioned conceptually into two pathways, one focusing on 𝑋 roi

𝑡 and the other focusing
on 𝑋bg

𝑡 , with shared parameters or partially separate parameters. For example, an encoder can process
the concatenated pair

Φ𝑡 = 𝜙

(
𝑋 roi
𝑡 , 𝑋

bg
𝑡 , 𝑐, 𝑡

)
, (3.3)

where 𝜙 denotes a multi-stage neural transformation that incorporates temporal modules and atten-
tion layers, and the condition 𝑐 is injected through adaptive normalization or cross-attention. The
region-aware representation Φ𝑡 is then decoded to produce a noise estimate 𝜖roi and 𝜖bg for region and
background respectively. The final noise prediction can be assembled as

𝜖𝜃 (𝑋𝑡 , 𝑀, 𝑐, 𝑡) = 𝑀 ⊙ 𝜖roi + (1 − 𝑀) ⊙ 𝜖bg. (3.4)

This decomposition is a simple example of a mixture-of-experts structure, where the mask acts as a
gating signal.

Region-of-interest information can also be integrated into attention mechanisms. Consider a self-
attention layer operating on a sequence of tokens obtained by flattening the spatiotemporal grid of the
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video. Each token 𝑢𝑖 corresponds to a particular (𝑡, ℎ, 𝑤) index and has an associated mask value 𝑚𝑖
[9]. In dot-product attention, the unnormalized compatibility between tokens 𝑖 and 𝑗 is given by

𝑠𝑖 𝑗 =
𝑞⊤
𝑖
𝑘 𝑗√
𝑑𝑘
, (3.5)

where 𝑞𝑖 and 𝑘 𝑗 are query and key vectors. To encourage stronger interactions within the region of
interest and controlled interactions between region and background, one can modify the scores as

𝑠𝑖 𝑗 = 𝑠𝑖 𝑗 + 𝛾 𝑚𝑖𝑚 𝑗 + 𝛿 𝑚𝑖 (1 − 𝑚 𝑗 ) + 𝜂 (1 − 𝑚𝑖)𝑚 𝑗 , (3.6)

where 𝛾, 𝛿, and 𝜂 are learnable or hand-tuned scalars that regulate attention within and across regions.
When 𝛾 is positive and larger in magnitude than 𝛿 and 𝜂, the network is encouraged to correlate positions
inside the region more strongly, thereby enhancing the coherence of edits across spatial locations within
the region. If 𝛿 and 𝜂 are negative, the attention between region and background can be softly suppressed,
reducing unintended influence of edits on non-target areas. These modulated scores are passed through
a softmax to produce attention weights, yielding

𝑎𝑖 𝑗 =
exp(𝑠𝑖 𝑗 )∑
𝑘 exp(𝑠𝑖𝑘)

. (3.7)

The resulting weighted sum over value vectors 𝑣 𝑗 generates updated token representations that respond
differently to region and background, while preserving differentiability with respect to both network
parameters and, in the case of soft masks, the mask values [10].

Beyond self-attention, cross-attention layers used for conditioning on text or other signals offer
another locus for integrating region-of-interest information. Let 𝑦ℓ denote a token corresponding to the
conditioning sequence, such as a text embedding. Cross-attention typically computes

𝑐𝑖ℓ =
𝑞⊤
𝑖
𝑘ℓ√
𝑑𝑘
, (3.8)

where 𝑞𝑖 depends on the video token and 𝑘ℓ depends on the condition. If a prompt contains multiple
semantic phrases, one can align specific phrases with specific regions and modulate cross-attention
accordingly. This can be achieved by introducing a matrix 𝑅 ∈ R𝑁×𝐿 , where 𝑁 is the number of video
tokens and 𝐿 is the number of condition tokens, and letting 𝑅𝑖ℓ encode the relevance of phrase ℓ to the
spatial position of token 𝑖. The attention logits can then be adjusted as

𝑐𝑖ℓ = 𝑐𝑖ℓ + 𝜌 𝑅𝑖ℓ , (3.9)

with a scaling parameter 𝜌. When regions are specified for different semantic entities, the entries of 𝑅
can be derived from the masks associated with each entity, thus providing fine-grained spatial control
during conditioning. The probability distribution over condition tokens for each video token becomes

𝛼𝑖ℓ =
exp(𝑐𝑖ℓ)∑
𝑘 exp(𝑐𝑖𝑘)

, (3.10)

and the context vector for token 𝑖 is the weighted sum of condition value vectors. This mechanism allows
different parts of the video to attend to different components of the conditioning sequence in a manner
aligned with region annotations.

On the numerical side, region-of-interest aware conditioning can be interpreted as inducing a non-
isotropic noise removal process [11]. In the standard diffusion setting, the denoiser attempts to remove
noise uniformly across all coordinates, reflecting the assumption that all pixels have identical prior
distributions. Introducing region-specific behavior effectively imposes a coordinate-wise preconditioner
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on the denoising process. Let 𝑊 ∈ R𝑑×𝑑 be a diagonal matrix with entries 𝑤𝑖 that encode the relative
strength of reconstruction at each pixel, where 𝑤𝑖 may depend on the mask. The reverse update can then
be written as

𝑥𝑡−1 = 𝑥𝑡 + Δ𝑡 𝑊 (𝜇𝜃 (𝑥𝑡 , 𝑀, 𝑐, 𝑡) − 𝑥𝑡 ) + 𝜎𝑡 𝑧𝑡 , (3.11)

where 𝜇𝜃 is a predicted mean and Δ𝑡 is a step size. If the weights 𝑤𝑖 are larger for pixels in the region
of interest, the reverse dynamics will adjust those coordinates more strongly at each step, effectively
amplifying the influence of editing constraints within the region compared to the background. This
preconditioning perspective provides a link between mask-aware conditioning and the dynamical system
underlying the diffusion model [12].

To ensure that region-aware conditioning remains compatible with the global coherence of the video, it
is necessary to consider how mask information propagates through the hierarchy of scales in the network.
In U-shaped architectures for video, feature maps at multiple resolutions represent progressively coarser
views of the spatiotemporal volume. The mask 𝑀 can be downsampled using average pooling or learned
projections to obtain masks at each resolution level, enabling the network to reason about regions both
at fine detail and coarse structure. If the mask is treated as a continuous function over spatiotemporal
coordinates, one can view this downsampling as approximating the convolution

𝑀 (𝑠) (𝑡, ℎ, 𝑤) =
∫

𝐾𝑠 (𝑢, 𝑣, 𝜏)𝑀 (𝑡 + 𝜏, ℎ + 𝑢, 𝑤 + 𝑣)d𝑢 d𝑣 d𝜏, (3.12)

where 𝐾𝑠 is a scale-dependent kernel. This continuous interpretation suggests that mask signals can
be smoothed and aggregated across neighborhoods to capture region shape and context at various
scales, which is beneficial for editing operations that must respect the geometry of objects and their
surroundings.

4. Spatiotemporal Denoising with Controllable Editing Constraints

Region-of-interest aware video editing can be viewed as solving a constrained generative problem,
where the constraints reflect both the desired edits in the region and the requirement that the background
remain close to the original video. In probabilistic terms, given an input video 𝑥0, a mask 𝑀 , and a
condition 𝑐, the goal is to sample from a conditional distribution [13] [14]

𝑝𝜃 (𝑥∗0 | 𝑥0, 𝑀, 𝑐), (4.1)

such that 𝑥∗0 satisfies editing constraints within the region and preservation constraints outside it. One
way to conceptualize this is to treat the edited video as the solution to an optimization problem over
trajectories of the reverse diffusion process. Let {𝑥𝑡 }𝐾𝑡=0 denote a reverse trajectory with 𝑥𝐾 sampled from
a standard Gaussian prior. The objective can be written informally as minimizing an energy functional

E(𝑥0:𝐾 ) =
𝐾∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 , 𝑀, 𝑐; 𝜃) + 𝜆bg


𝑃bg𝑥0 − 𝑃bg𝑥

∗
0


2

2 , (4.2)

subject to the constraint that {𝑥𝑡 } follows the reverse transition dynamics induced by the diffusion model.
Here, ℓ𝑡 encapsulates the mismatch between the reverse transition and the learned denoiser at each step,
while the second term enforces background preservation.

In practice, direct trajectory optimization is not performed. Instead, one modifies the reverse updates
to incorporate guidance terms that reflect the desired constraints in a stepwise manner. A common form
of classifier-free guidance adjusts the predicted noise as

𝜖guided = 𝜖𝜃 (𝑥𝑡 , 𝑡,∅) + 𝛾 [15] (𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐) − 𝜖𝜃 (𝑥𝑡 , 𝑡,∅)) , (4.3)
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where ∅ denotes the absence of conditioning and 𝛾 is a guidance scale. In the region-of-interest aware
setting, this guidance can be made spatially varying. Define a guidance field 𝑔 ∈ R𝑑

′ derived from the
mask, taking values in [0, 1]. The guided noise prediction becomes

𝜖roi (𝑥𝑡 , 𝑀, 𝑐, 𝑡) = 𝜖𝜃 (𝑥𝑡 , 𝑡,∅) + 𝑔 ⊙ (𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐) − 𝜖𝜃 (𝑥𝑡 , 𝑡,∅)) . (4.4)

By setting 𝑔 to be large in the region and small in the background, the edit-specific guidance is
concentrated where desired, while the background is reconstructed more according to the unconditional
model that approximates the original content distribution. This approach yields a spatially non-uniform
guidance scheme that aligns with user-specified regions [16].

Temporal consistency is a key concern in video editing, particularly at the boundaries of the region
where edited objects interact with unedited background. To reason about temporal coherence, consider
the video as a function 𝑥0 (𝑡, ℎ, 𝑤, 𝑐) defined on a discrete time axis and continuous spatial coordinates.
Temporal differences across frames can be approximated by finite differences. For frame index 𝑘 , the
temporal derivative at position (ℎ, 𝑤) can be approximated as

𝐷𝑡𝑥0 (𝑘, ℎ, 𝑤) = 𝑥0 (𝑘 + 1, ℎ, 𝑤) − 𝑥0 (𝑘, ℎ, 𝑤). (4.5)

For a consistent video, these differences should vary smoothly across time, especially along trajectories
corresponding to the same physical point in the scene. In the presence of an edited region, one aims
to maintain smoothness not only within the region but also across the interface between region and
background. To enforce this, the diffusion model can incorporate a penalization of temporal gradients
weighted by the mask [17]. Define a temporal smoothness functional

S(𝑥∗0, 𝑀) =
∑︁
𝑘

∑︁
ℎ,𝑤

𝜔𝑘,ℎ,𝑤


𝐷𝑡𝑥∗0 (𝑘, ℎ, 𝑤)

2

2 , (4.6)

where 𝜔𝑘,ℎ,𝑤 is a weight that depends on both the mask value and perhaps its spatial derivatives,
increasing near region boundaries. During training, a surrogate version of this functional can be
applied at intermediate diffusion steps by approximating temporal differences in the noisy latents and
backpropagating gradients through the denoising network.

From the standpoint of multivariate calculus, the diffusion model defines a mapping

𝐹𝜃 : R𝑑 × R𝑑
′ × C × {1, . . . , 𝐾} → R𝑑 , (4.7)

where C denotes the space of conditions, and

𝐹𝜃 (𝑥𝑡 , 𝑚, 𝑐, 𝑡) = 𝜖𝜃 (𝑥𝑡 , 𝑚, 𝑐, 𝑡). (4.8)

The associated reverse update can be seen as an explicit method for integrating an ordinary differential
equation with additive noise. For small step sizes, this resembles a forward Euler discretization of a drift
field

𝑏(𝑥𝑡 , 𝑚, 𝑐, 𝑡) = −𝜅𝑡𝐹𝜃 (𝑥𝑡 , 𝑚, 𝑐, 𝑡), (4.9)

with scaling 𝜅𝑡 depending on the noise schedule. The presence of the mask introduces an additional
dependence of the drift field on spatial coordinates, effectively making the vector field non-homogeneous
across the domain [18]. The Jacobian of this field with respect to 𝑥𝑡 ,

𝐽𝑡 = ∇𝑥𝑡 𝑏(𝑥𝑡 , 𝑚, 𝑐, 𝑡), (4.10)

determines the local stability and contraction properties of the reverse dynamics. If large eigenvalues of
𝐽𝑡 are concentrated in the subspace associated with the region of interest, while the background subspace
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has smaller eigenvalues, the dynamics will adjust more strongly within the region. This observation
connects the choice of training objectives and mask weighting with the numerical behavior of the
sampling algorithm.

The interface between edited and preserved regions can be modeled using tools from discrete
geometry. Let 𝜕𝑀 denote a discrete approximation of the boundary of the mask, defined as the set of
voxels whose mask value differs from at least one neighbor. To avoid artifacts at 𝜕𝑀 , it is useful to relax
the binary mask into a continuous transition layer. One can define a smoothed mask 𝑀̃ as the solution
of a discrete diffusion equation on the spatial grid. For a frame 𝑘 , consider the Laplacian operator

(Δ𝑀̃)ℎ,𝑤 =
∑︁

(𝑢,𝑣) ∈N(ℎ,𝑤)

(
𝑀̃𝑢,𝑣 − 𝑀̃ℎ,𝑤

)
, [19] (4.11)

where N(ℎ, 𝑤) is a neighborhood around (ℎ, 𝑤). Solving

𝑀̃ = 𝑀 + 𝛼Δ𝑀̃, (4.12)

for a small 𝛼 yields a mask with softened boundaries. This smoothed mask can regulate the transition
of editing strength from fully edited to fully preserved regions and can be used both in the network
conditioning and in the loss weighting, reducing sharp discontinuities that might otherwise cause ringing
or ghosting artifacts in the resulting video.

Another aspect of controllable editing is the ability to adjust the extent of the region over time or as
a function of diffusion step. Users may specify an initial mask that is then dilated or eroded adaptively
during sampling. Mathematically, this corresponds to evolving the mask under morphological operations
that depend on the current denoising state. For instance, let 𝑀𝑡 denote the mask at diffusion step 𝑡. One
may define an update

𝑀𝑡−1 = Ψ(𝑀𝑡 , 𝑥𝑡 , 𝑐), (4.13)

where Ψ is a function that performs dilation in areas where the network predicts strong consistency
between edited content and background or erodes regions where the edit conflicts with structural
constraints [20]. While such dynamic mask evolution introduces additional complexity, it provides a
mechanism for refining the region-of-interest during denoising in response to the generative process
itself.

5. Numerical Optimization, Training Objectives, and Sampling Algorithms

Training a region-of-interest aware diffusion model for video editing requires designing an objective
function that balances reconstruction fidelity, edit specificity, temporal coherence, and numerical sta-
bility. Let D denote a dataset of triplets (𝑥0, 𝑐, 𝑀) representing original videos, associated conditions,
and masks. The conditions can encapsulate text prompts, reference images, or other control modalities.
During training, one samples a timestep 𝑡, draws Gaussian noise 𝜖 , and constructs the noisy latent

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√︁
1 − 𝛼𝑡𝜖 . (5.1)

The diffusion network receives 𝑥𝑡 , the mask 𝑀 , the condition 𝑐, and the timestep 𝑡, and outputs a noise
prediction 𝜖 . The basic denoising objective minimizes a weighted mean squared error between 𝜖 and 𝜖 .
In the region-aware setting, the error is decomposed according to the mask. Define

Lroi = E
[
∥𝑀 ⊙ (𝜖 [21] − 𝜖)∥2

2
]
, (5.2)

Lbg = E
[
∥(1 − 𝑀) ⊙ (𝜖 − 𝜖)∥2

2 [22]
]
. (5.3)
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These two losses can be combined with distinct weights

Ldenoise = 𝜆roiLroi + 𝜆bgLbg, (5.4)

where 𝜆roi and 𝜆bg regulate the trade-off between editing strength and background preservation. When
training for editing, it is often desirable to place higher emphasis on accurate noise prediction inside the
region than outside, leading to 𝜆roi > 𝜆bg.

In many editing scenarios, there is an explicit or implicit target video 𝑥′0 that reflects the desired
edited content. This can arise, for example, when training from pairs of before-and-after videos or when
simulating edits via self-supervision. In such cases, one can introduce an additional reconstruction loss
defined on the denoised sample after a full reverse trajectory. Let 𝑥0 denote the reconstruction obtained
by running the reverse process from a noisy sample. A supervised editing loss can be expressed as

Ledit = E
[

𝑀 ⊙

(
𝑥0 − 𝑥′0

)
[23]




1
]
, (5.5)

using an ℓ1 norm to increase robustness to outliers. A background preservation loss can also be defined as

Lpreserve = E [∥(1 − 𝑀) ⊙ (𝑥0 − 𝑥0)∥1] [24] . (5.6)

These terms penalize deviations from the original content outside the region while encouraging align-
ment with the editing target inside the region. The total training loss combines these components with
temporal smoothing and regularization terms,

Ltotal = Ldenoise + 𝜂editLedit + 𝜂preserveLpreserve + 𝜂tempLtemp + 𝜂regLreg, (5.7)

where Ltemp enforces temporal coherence and Lreg is a regularizer that may include weight decay and
spectral normalization.

Temporal coherence can be encouraged by penalizing inconsistencies of feature representations
across consecutive frames. Let 𝜙𝑘 denote a feature map extracted from the video latent for frame 𝑘 at
some intermediate layer. A simple temporal loss can be defined as

Ltemp = E

[∑︁
𝑘

∥𝜙𝑘+1 − 𝜙𝑘 ∥2
2

]
, [25] (5.8)

possibly weighted by the mask to focus on regions where edits occur. This captures short-range tem-
poral smoothness. Longer-range consistency can be addressed by considering multi-step differences
or by tracking correspondences along estimated motion trajectories, but such enhancements increase
computational complexity.

From an optimization standpoint, the training problem is a large-scale stochastic optimization in a
high-dimensional parameter space. The gradient of the loss with respect to parameters 𝜃 is computed via
backpropagation through the diffusion network and the various loss components. To maintain numerical
stability and efficiency, gradient clipping and adaptive learning rate methods are often employed. The
presence of region-aware weighting makes the gradient contributions from different spatial locations
heterogeneous. Let 𝑔𝑖 denote the gradient contribution from pixel 𝑖, and let 𝑤𝑖 denote the corresponding
mask-based weight. The total gradient can be expressed as

∇𝜃Ldenoise =
∑︁
𝑖

𝑤𝑖𝑔𝑖 [26] . (5.9)

If the weights vary significantly across pixels, the gradient may become dominated by a relatively
small set of region pixels, potentially leading to unstable parameter updates. To mitigate this, one can
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normalize the weights or introduce a per-sample normalization factor

𝑤̃𝑖 =
𝑤𝑖∑
𝑗 𝑤 𝑗

, (5.10)

which ensures that the total amplitude of the weighted gradient remains bounded.
Sampling from a trained region-of-interest aware diffusion model involves integrating the reverse

dynamics under the influence of the mask and the condition. In discrete time, the reverse sampler
proceeds from 𝑥𝐾 ∼ N(0, 𝐼) down to 𝑥∗0 via a sequence of updates. When using a noise-prediction
formulation, the update at step 𝑡 can be written as

𝑥𝑡−1 =
1

√
𝛼𝑡

(𝑥𝑡 − 𝛽𝑡𝜖roi (𝑥𝑡 , 𝑀, 𝑐, 𝑡)) + 𝜎𝑡 𝑧𝑡 , [27] (5.11)

where 𝛽𝑡 and 𝜎𝑡 are schedule-dependent coefficients. This is an explicit integration scheme whose
stability is tied to the spectrum of the Jacobian of the denoiser. To improve stability and sample quality,
higher-order numerical schemes can be employed. For example, a two-step method that approximates
the drift at intermediate points can reduce local truncation error. Consider an approximation of the
continuous-time reverse dynamics

d𝑥
d𝑡

= −𝑏𝑡𝜖roi (𝑥, 𝑀, 𝑐, 𝑡), (5.12)

where 𝑏𝑡 is a scalar function. A second-order Runge–Kutta method can be implemented by computing

𝑘1 = −𝑏𝑡𝜖roi (𝑥𝑡 , 𝑀, 𝑐, 𝑡), (5.13)
𝑥 = 𝑥𝑡 + Δ𝑡 𝑘1, (5.14)

[28]𝑘2 = −𝑏𝑡−Δ𝑡𝜖roi (𝑥, 𝑀, 𝑐, 𝑡 − Δ𝑡), (5.15)

𝑥𝑡−Δ𝑡 = 𝑥𝑡 +
Δ𝑡

2
(𝑘1 + 𝑘2), (5.16)

with appropriate noise terms added to match the stochastic dynamics. Such higher-order integrators
can reduce the number of function evaluations required for a given level of sample quality, which is
particularly relevant when operating on large video tensors.

Discretization choices also influence how region-aware behavior manifests in the final video. If the
timestep schedule allocates many steps at high noise levels and fewer at low noise levels, the model may
have more opportunity to adjust global structure early in the trajectory but less opportunity for fine local
refinements near the end. For region-of-interest editing, it may be beneficial to skew the schedule or
adaptively adjust guidance strength as a function of time. For instance, one can define a time-dependent
guidance field

𝑔𝑡 = 𝛾𝑡𝑀, (5.17)

where 𝛾𝑡 is a scalar that increases as 𝑡 approaches zero [29]. In early steps with large noise, guidance
is weaker, allowing the reverse process to establish a coherent global structure, while in later steps
guidance is stronger, focusing on refining the edited region. This strategy reflects the intuition that
coarse structure should be formed before fine-grained edits are enforced.

In scenarios where the original video 𝑥0 is available as an input to the editing process, one can
initialize the reverse trajectory from a noisy version of 𝑥0 rather than from pure Gaussian noise. This
can be implemented by sampling a noise vector 𝜖 and constructing

𝑥𝑇 =
√
𝛼𝑇𝑥0 +

√︁
1 − 𝛼𝑇𝜖 . (5.18)
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The reverse process then denoises 𝑥𝑇 under the influence of the region-aware condition, leading to an
edited version 𝑥∗0 that remains anchored to the original video. This initialization strategy often improves
background preservation, since the model starts from a point already close to the original content, and
the mask-guided denoising primarily alters the region of interest. However, it also increases the risk
of residual artifacts if the denoiser fails to remove enough noise in the region while preserving the
background.

6. Experimental Evaluation and Analysis

To evaluate region-of-interest aware diffusion models for controllable video editing, one can consider
synthetic and real-world editing tasks that stress different aspects of controllability, identity preserva-
tion, and temporal coherence. In synthetic setups, masks and target edits can be derived from known
transformations applied to original videos. For example, objects can be replaced with different cate-
gories, colors can be shifted, or textures can be altered, with corresponding ground truth edited videos
generated through deterministic rendering or compositing pipelines. In real-world scenarios, masks
may be obtained from segmentation algorithms or manual annotations, and target styles or attributes are
specified via textual prompts or reference images [30].

A useful class of tasks involves object-centric edits in which a foreground object is replaced or
modified while the background remains unchanged. Videos containing people, vehicles, or animals
provide natural testbeds, as segmentation models can produce approximate foreground masks. In such
tasks, region-of-interest aware diffusion models can be compared against baseline methods that use
global conditioning without explicit mask integration. Quantitative metrics can include reconstruction
error outside the region, measured as the average ℓ1 or ℓ2 difference between the original and edited
videos in the background, as well as perceptual distances computed using pre-trained feature extractors.
Within the region, similarity to a desired attribute or style can be approximated using classifier-based
scores or feature distances relative to reference exemplars.

Temporal coherence can be analyzed by measuring frame-to-frame differences both in pixel space
and in feature space. One can compute, for each video, the average temporal gradient magnitude

𝐺 temp =
1

𝑇 − 1

𝑇−1∑︁
𝑘=1



𝑥∗0 (𝑘 + 1) − 𝑥∗0 (𝑘)


2

2 , (6.1)

and compare it to the corresponding quantity for the original video. Values that are excessively large may
indicate flickering or instability, whereas values that are unusually small could signal oversmoothing
[31]. By computing 𝐺 temp separately for region and background, it is possible to study how region-
aware guidance affects dynamic behavior in different parts of the frame. For example, a well-behaved
edit may show increased temporal variation in the region when new motion patterns are introduced,
while maintaining similar temporal gradients in the background.

Boundary quality at the interface of edited and preserved regions can be studied using mask-based
band analysis. Define a boundary band by taking the set of pixels within a small distance from 𝜕𝑀 .
Errors and temporal inconsistencies can be computed specifically within this band. Let 𝐵 denote the
index set of boundary pixels. A boundary distortion metric may be defined as

𝐸bound =
1
|𝐵|

∑︁
𝑖∈𝐵



𝑥∗0 (𝑖) − 𝑥0 (𝑖)


2

2 . (6.2)

Low values of this metric suggest that the transition between edited and non-edited regions is visually
coherent and does not introduce noticeable artifacts [32]. When comparing region-aware models to
baselines that ignore masks, one can analyze whether explicit mask conditioning reduces boundary
distortions and yields smoother compositing.
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From a probabilistic perspective, the effect of region-aware conditioning can be inferred by examining
the distribution of latent codes at various diffusion steps. Consider extracting intermediate representa-
tions 𝑧𝑡 from a fixed layer of the network during sampling. These representations can be decomposed
into region and background components using the mask. One can then compute empirical covariance
matrices for both components,

Σroi (𝑡) = E
[
(𝑧roi
𝑡 − 𝜇roi (𝑡)) (𝑧roi

𝑡 − 𝜇roi (𝑡))⊤
]
, (6.3)

Σbg (𝑡) = E
[
(𝑧bg
𝑡 − 𝜇bg (𝑡)) (𝑧bg

𝑡 − 𝜇bg (𝑡))⊤
]
, (6.4)

where 𝜇roi (𝑡) and 𝜇bg (𝑡) are mean vectors. Differences in the eigenvalue spectra of these covariance
matrices across time steps can reveal how the model allocates representational capacity to the region
versus the background [33]. For instance, a larger spread of eigenvalues for Σroi (𝑡) may indicate that
the model represents a richer set of variations within the region, consistent with diverse possible edits,
while a more concentrated spectrum for Σbg (𝑡) may reflect stronger regularization towards preserving
original content.

Another aspect of analysis involves studying the sensitivity of the edited video with respect to
perturbations in the mask. Given an input video and a condition, one can slightly dilate or erode the
mask and observe how the output changes. A local sensitivity measure can be defined using finite
differences. For a small perturbation 𝛿𝑀 , the change in the output can be approximated as

𝑆 =
1

∥𝛿𝑀 ∥2



𝑥∗0 (𝑀 + 𝛿𝑀) − 𝑥∗0 (𝑀)




2 . (6.5)

Low sensitivity away from the mask boundary suggests that the model is robust to small imperfections
in the mask, which is desirable when masks are obtained from noisy segmentation algorithms. Higher
sensitivity near the boundary may be acceptable, as mask edits in that region explicitly change which
pixels are designated for editing.

Comparisons with baseline models that do not incorporate region-aware mechanisms can clarify
the value of explicit region conditioning. For example, a baseline diffusion model trained with global
conditioning can be adapted to approximate region-specific edits by blending its output with the original
video using the mask. That is, one can generate a globally edited video 𝑦0 and then form [34]

𝑥blend
0 = 𝑀 ⊙ 𝑦0 + (1 − 𝑀) ⊙ 𝑥0. (6.6)

While this strategy ensures perfect background preservation, it may lead to inconsistencies at the
boundaries, since the network did not account for the need to align the edited content with the original
background. Artifacts such as halos, ghosts, or geometry misalignments may arise. In contrast, a region-
of-interest aware diffusion model integrates the mask during denoising, enabling the network to adjust
both edited content and its interface with the background jointly. Evaluating these two approaches
using boundary metrics and perceptual scores can highlight the benefits of the integrated region-aware
formulation.

User-controllable parameters play a significant role in practical editing. Besides the mask, parameters
such as guidance strength, temporal consistency weights, and region expansion factors allow users to
navigate the trade-offs between edit intensity and preservation of the original video. One can analyze the
effect of varying these parameters by sampling multiple edited videos for the same input and condition.
For each parameter configuration, metrics such as background error, region attribute alignment, and
temporal gradient statistics can be recorded [35]. The resulting curves provide insight into how the
region-aware diffusion model responds to control parameters and whether its behavior matches user
expectations. For instance, increasing a guidance scale might produce stronger attribute changes but
also increase the risk of overshooting or introducing artifacts.
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Finally, computational considerations must be assessed. Operating on full-resolution video volumes is
expensive, and region-aware conditioning introduces additional overhead in the form of mask processing
and modified attention computations. The effective computational cost depends on the size of the region
relative to the entire frame. If regions are typically small, one could consider hybrid approaches that
restrict certain expensive operations, such as high-resolution temporal attention, to the region and its
immediate vicinity, while applying cheaper operations elsewhere. Theoretical analysis of algorithmic
complexity can quantify the dependence of runtime and memory on video length, resolution, and region
size, and empirical benchmarks can validate whether the proposed designs are feasible for interactive
editing workflows.

7. Conclusion

This paper has examined region-of-interest aware diffusion models for controllable video editing,
focusing on how spatially localized masks can be integrated into the denoising process to achieve
precise edits while preserving global coherence. By representing videos as high-dimensional tensors
and masks as operators acting on these tensors, the analysis has connected region-aware conditioning
to non-isotropic noise removal and spatially varying score fields. Several mechanisms for incorporating
mask information into diffusion models have been considered, including masked feature decomposition,
modulation of self-attention and cross-attention, and spatially varying guidance schemes derived from
classifier-free guidance [36]. These mechanisms enable the model to treat edited and preserved regions
differently in a unified generative framework.

The study has also discussed how spatiotemporal coherence can be promoted by combining region-
aware denoising with temporal smoothness objectives and boundary-aware mask smoothing. The view
of diffusion sampling as numerical integration of a reverse-time dynamical system has provided a lens
for understanding how mask-based weighting affects the stability and contraction properties of the
reverse process. Higher-order integration schemes and time-dependent guidance schedules have been
highlighted as tools to balance global structure formation and local edit refinement. Training objectives
with separate losses for region and background components have been proposed to manage the trade-
off between edit fidelity and identity preservation, while considerations of gradient heterogeneity and
normalization address numerical aspects of optimization.

Experimental analyses, in principle, can assess the behavior of region-of-interest aware diffusion
models on tasks such as object replacement, localized stylization, and attribute modification, using met-
rics for background preservation, region attribute alignment, temporal gradients, and boundary quality.
Comparisons with baseline methods that lack explicit region-aware conditioning, including simple
blending of globally edited outputs with original videos, can clarify the practical advantages of inte-
grating masks within the diffusion process. Sensitivity studies with respect to perturbations of the mask
and control parameters such as guidance strength further characterize the robustness and controllability
of the approach. Region-of-interest aware diffusion models provide a flexible framework for aligning
generative video models with the needs of practical editing workflows, in which localized control, tem-
poral stability, and background preservation are central considerations. The formulation developed here
suggests several directions for further investigation, including mask-dependent architecture adaptations,
dynamic mask evolution during sampling, and more advanced temporal modeling that exploits motion
correspondences. As diffusion-based methods continue to evolve for video applications, incorporating
structured spatial and temporal constraints through region-aware mechanisms may remain an important
component of controllable video editing systems [37].
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